Glomalin and Conservation in Humboldt County The 1996 discovery of the soil glue glomalin is changing our understanding of the impact of elevated carbon dioxide, while giving important clues to forest health, watersheds, revegetation, wildfire and carbon sequestration. Here I share what I have found so others may read and draw their own conclusions, and relate it to my own experience, Humboldt County issues and stories from the news.

Monday, January 31, 2005

101. Second Growth or New Zealand 

101. Second Growth or New Zealand

Good articles on redwood quality this week in the Northcoast Journal. Here we plainly see the focus is not n the primary product of the land: water. At this point local focus should be on profitable use for all the vegetation removed or needing removal for fire risk management. But differing styles of management are all concerned with rotation and replanting and its effect on the wood. But the forest is a functioning system and should be allowed to continue to do so, or we will have all the types of trouble we have seen on the ground. We will have more planning and planning costs for harvest making it difficult to sell a few trees for private owners, effectively closing the market.
The ignorance of a basic natural law is costing us productivity due to over regulation because we haven’t found satisfactory answers to landscape destruction, which continues to outrage the people and set natural restoration back. It is the big tradeoff from development. When it is found glomalin accumulation is a major factor in watershed health we will want to preserve as much of this as possible and not interfere either with production nor accumulation in order to restore our land and streams. We can be serious marketers of carbon storage while actively taking a percentage as timber or grass. We will want land use policies that are permanent, to include capture and use of water and CO2 as positive and profitable measures of management, and that harmonize with sustainable activities across the landscape. PL was an all-aged operation until the Maxxam buyout. AW Smith had seen logging destruction in Maine and around the Great Lakes.. That’s why they were still here when most of the others had cut and run. Mendocino Redwood saw previous destruction and implemented a new strategy that is favorable to the watershed health and they may get some pleasant surprises. I have been writing about my own efforts to understand a destroyed landscape in Humboldt. We all started at a devastated landscape and worked back.
Are we better off select cutting or clear cutting and replanting? Again, this begs the issue. Smaller roots mean less carrying capacity, shorter rotations means ignoring the water storage altogether. There probably is some percentage of water storage removal a watershed can live with before it goes dysfunctional.
If we can supply a steady stream of material as we convert to an ongoing process we can add many acres to the land base for companies operating these facilities, from small wood mills to pulp, fuel and compost. A consensus on management decision would benefit everyone. We know several endemic mycorhizzia appear in newly planted ground (or else the trees would die) but it would take a long time to establish the biodiversity of functioning forest. It may be redwood needs nutrients it must obtain from associated species for chemical production just as it does for growth. It is quite possible defensive chemicals form early under duress- it could be why growth is slower.
The redwood argument can be looked at from this point: why not manage the stump sprouts in watershed areas? This takes advantage of the established root system to throw up a new canopy. Thinning to a few leaders in a couple of years gets a pretty good canopy. This produces water and habitat and reduces fire risk. These grow very fast although I have seen sawable logs with very little heartwood as young as thirty. I have also found washed out trees I planted a couple of years old with a heartwood core and very little sapwood. These trees are shade grown in duress. I also wonder if the cloned trees show genetic aging like the animals do. If so will they produce chemicals at an earlier age because they are “older?”
What about Douglas fir? It doesn’t stump sprout. It takes many years for the stumps to rot out. Clear cuts and natural seeding are used extensively because fir will sprout very well in vegetation free soil. Its biggest threat is desiccation in the summer before it establishes a sufficient mycorhizzial network for survival. We are counting on endemic fungi to regrow the surface water storage of the area. Its capacity to slow down and absorb water is greatly reduced, increasing runoff, and thus sediment through cutting and destruction of the soil glue leading to debris flows and slides. This effect is exaggerated in places where the surface drainage has been haphazardly altered. All soil cut loose ends up at the bottom of the watershed, in the stream, filling the pools and reducing biocapacity, and ensuring lots of bank scour and flooding in high water.
It is possible to create a stable and profitable landscape that provides jobs and products without sacrificing everything else to do it.

Comments: Post a Comment

This page is powered by Blogger. Isn't yours?